\qquad

Reteaching Page

9.7 - Dividing Integers

Dividing integers follows the exact same rules and steps as multiplying integers!!!

To divide integers use the rule.
When the dividend and divisor have the same sign, the result is a positive quotient!
When the dividend and divisor have different signs, the result is a negative quotient!
$12 \div 2=6 \rightarrow$ the signs are the same so the quotient is positive.
$(-12) \div(-2)=6 \rightarrow$ the signs are the same so the quotient is positive.
$(-12) \div 2=-6 \rightarrow$ the signs are different so the quotient is negative.
$12 \div(-2)=-6 \rightarrow$ the signs are different so the quotient is negative.

Use the rules to tell whether the quotient of each division problem will be (+) or (-).
$(+) 15 \div 3$ \qquad $(-36) \div 9$
$-28 \div(-7)$
\qquad $(-10) \div(-2)$

Find the quotient:
$=(-45) \div(-9)$
$\ldots=40 \div(-8)$
$\ldots=(-27) \div 3$
$\ldots \quad=(-16) \div(-8)$

Evaluate $-28 \div \boldsymbol{n}$ when $\boldsymbol{n}=7$
Rewrite the problem using substitution. $-28 \div 7=$ \qquad
Find the quotient using the rules. $-28 \div 7=_\longrightarrow 28 \div 7=-4 \rightarrow$ different signs make a negative quotient.

Evaluate $-24 \div \boldsymbol{n}$ for each given value of \boldsymbol{n}.
\qquad $\boldsymbol{n}=4 \rightarrow$ rewrite the problem using substitution. \qquad \rightarrow Find the quotient using the rules.
\qquad $\boldsymbol{n}=-6 \rightarrow$ rewrite the problem using substitution. \qquad \rightarrow Find the quotient using the rules.
\qquad $n=-3 \rightarrow$ rewrite the problem using substitution. \qquad \rightarrow Find the quotient using the rules.
\qquad $\boldsymbol{n}=8 \rightarrow$ rewrite the problem using substitution. \qquad \rightarrow Find the quotient using the rules.

